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Bimetric gravity

» Five additional parameters

(m2)6i7 = 074

» Graviton mass
1
mg = m(1+ 55)(Brc + 26267 + fsc?)

where £, = c2gw,
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Accelerated expansion without vacuum energy
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Vacuum still gravitates
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Extra gravity in galaxies and clusters

Can not account for all dark matter
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Newtonian gravity in solar system

v

Runaway gravitational collapse in early universe?
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Gravitational collapse in bimetric gravity

» First order perturbation theory in general relativity (GR)
accounts for observed structures on large scales

» Fails in bimetric gravity; perturbations grow too fast in early
universe

» For 31-model, problems at z > 1

> Instabilities can be pushed as early as wanted by taking the
GR limit of the theory

» Faster growth alleviates need for dark matter

» Non-linear structure formation?
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Length scales

» Gravitational radius of star (galaxy, cluster...)

M
M~ 150 —kma5- 10~ kpe

» Graviton wavelength

» Hubble radius
ry=Hyt ~5-10°kpc

» Vainshtein radius
ry ~ MAZ
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Gravitational field

» Newtonian gravity

M
Oy = ——
p

> First order expansion in bimetric gravity

®=0N[1+kexp(—r/Ag)] = Ox[L+ k] (r<Ag)

» Including higher order terms

® = by [1+k1 <1+(7)3+...>]
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» To lowest order
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Gravitational field

> r3rv
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Vainshtein radius

» Vainshtein radius
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» A galaxy with M = 102> M, has

ry = 1Mpc

» A galaxy cluster with M = 10*®> M, has

ry ~ 10 Mpc

» The Sun has ®(ry) = 10715 and a galaxy ®(ry) = 10~



Galaxy rotation curves
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Observational limits

» Deviations from GR in solar system small

<1AU

3
) <107° = N\ 2 1kpe~2-10"ry
rv

» Galaxy lensing and velocity dispersions

Ag 21073y or A\, <1070y
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Vainshtein density

Average density within ry of mass M(ry) is

M _
pv = ( N)‘gszgrit (Ag = rH)
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Observational consequences
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Result
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Linear bimetric gravity (with /1) predicts runaway
gravitational collapse at z 2 1

GR restored at densities higher then p0 ..

v

v

Currently no need to give up on bimetric gravity

v

Observations at large scales crucial



