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I Accelerated expansion without vacuum energy

I Vacuum still gravitates

I Extra gravity in galaxies and clusters

I Can not account for all dark matter

I Newtonian gravity in solar system

I Runaway gravitational collapse in early universe?
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Gravitational collapse in bimetric gravity

I First order perturbation theory in general relativity (GR)
accounts for observed structures on large scales

I Fails in bimetric gravity; perturbations grow too fast in early
universe

I For β1-model, problems at z & 1

I Instabilities can be pushed as early as wanted by taking the
GR limit of the theory

I Faster growth alleviates need for dark matter

I Non-linear structure formation?
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I Gravitational radius of star (galaxy, cluster. . . )

M ≈ 1.5
M

M�
km ≈ 5 · 10−17 kpc

I Graviton wavelength
λ2g ≡ m−2

g

I Hubble radius
rH ≡ H−1

0 ≈ 5 · 106 kpc

I Vainshtein radius
r3V ∼ Mλ2g



Length scales

I Gravitational radius of star (galaxy, cluster. . . )

M ≈ 1.5
M

M�
km ≈ 5 · 10−17 kpc

I Graviton wavelength
λ2g ≡ m−2

g

I Hubble radius
rH ≡ H−1

0 ≈ 5 · 106 kpc

I Vainshtein radius
r3V ∼ Mλ2g



Length scales

I Gravitational radius of star (galaxy, cluster. . . )

M ≈ 1.5
M

M�
km ≈ 5 · 10−17 kpc

I Graviton wavelength
λ2g ≡ m−2

g

I Hubble radius
rH ≡ H−1

0 ≈ 5 · 106 kpc

I Vainshtein radius
r3V ∼ Mλ2g



Length scales

I Gravitational radius of star (galaxy, cluster. . . )

M ≈ 1.5
M

M�
km ≈ 5 · 10−17 kpc

I Graviton wavelength
λ2g ≡ m−2

g

I Hubble radius
rH ≡ H−1

0 ≈ 5 · 106 kpc

I Vainshtein radius
r3V ∼ Mλ2g



Gravitational field

I Newtonian gravity

ΦN = −M

r

I First order expansion in bimetric gravity

Φ = ΦN [1 + k1 exp(−r/λg )] ≈ ΦN [1 + k1] (r � λg )

I Including higher order terms

Φ = ΦN

[
1 + k1

(
1 +

( rV
r

)3
+ · · ·

)]



Gravitational field

I Newtonian gravity

ΦN = −M

r

I First order expansion in bimetric gravity

Φ = ΦN [1 + k1 exp(−r/λg )] ≈ ΦN [1 + k1] (r � λg )

I Including higher order terms

Φ = ΦN

[
1 + k1

(
1 +

( rV
r

)3
+ · · ·

)]



Gravitational field

I Newtonian gravity

ΦN = −M

r

I First order expansion in bimetric gravity

Φ = ΦN [1 + k1 exp(−r/λg )] ≈ ΦN [1 + k1] (r � λg )

I Including higher order terms

Φ = ΦN

[
1 + k1

(
1 +

( rV
r

)3
+ · · ·

)]



Gravitational field

I Expand in m2
g

Φ = ΦN + k2
r2

λ2g
+ k3

r4

λ4g
+ · · ·

= ΦN + k2

(
M

r

)(
r

rV

)3

+ k3

(
M

r

)2( r

rV

)6

+ · · ·

I To lowest order

Φ = ΦN

[
1− k2

(
r

rV

)3
]



Gravitational field

I Expand in m2
g

Φ = ΦN + k2
r2

λ2g
+ k3

r4

λ4g
+ · · ·

= ΦN + k2

(
M

r

)(
r

rV

)3

+ k3

(
M

r

)2( r

rV

)6

+ · · ·

I To lowest order

Φ = ΦN

[
1− k2

(
r

rV

)3
]



Gravitational field

I r . rV

Φ = ΦN

[
1− k2

(
r

rV

)3
]
≈ ΦN (r � rV )

I rV . r . λg

Φ = ΦN

[
1 +

c2

3(1 + c2)

]
I r & λg

Φ = ΦN

[
1 +

c2

3(1 + c2)
exp(−r/λg )

]
≈ ΦN (r � λg )



Gravitational field

I r . rV

Φ = ΦN

[
1− k2

(
r

rV

)3
]
≈ ΦN (r � rV )

I rV . r . λg

Φ = ΦN

[
1 +

c2

3(1 + c2)

]

I r & λg

Φ = ΦN

[
1 +

c2

3(1 + c2)
exp(−r/λg )

]
≈ ΦN (r � λg )



Gravitational field

I r . rV

Φ = ΦN

[
1− k2

(
r

rV

)3
]
≈ ΦN (r � rV )

I rV . r . λg

Φ = ΦN

[
1 +

c2

3(1 + c2)

]
I r & λg

Φ = ΦN

[
1 +

c2

3(1 + c2)
exp(−r/λg )

]
≈ ΦN (r � λg )



Vainshtein radius

I Vainshtein radius

rV ≈ 0.1

[
M

M�

(
λg
rH

)2
]1/3

kpc

I A galaxy with M = 1012M� has

rV ≈ 1Mpc

I A galaxy cluster with M = 1015M� has

rV ≈ 10Mpc

I The Sun has Φ(rV ) = 10−15 and a galaxy Φ(rV ) = 10−7



Vainshtein radius

I Vainshtein radius

rV ≈ 0.1

[
M

M�

(
λg
rH

)2
]1/3

kpc

I A galaxy with M = 1012M� has

rV ≈ 1Mpc

I A galaxy cluster with M = 1015M� has

rV ≈ 10Mpc

I The Sun has Φ(rV ) = 10−15 and a galaxy Φ(rV ) = 10−7



Vainshtein radius

I Vainshtein radius

rV ≈ 0.1

[
M

M�

(
λg
rH

)2
]1/3

kpc

I A galaxy with M = 1012M� has

rV ≈ 1Mpc

I A galaxy cluster with M = 1015M� has

rV ≈ 10Mpc

I The Sun has Φ(rV ) = 10−15 and a galaxy Φ(rV ) = 10−7



Vainshtein radius

I Vainshtein radius

rV ≈ 0.1

[
M

M�

(
λg
rH

)2
]1/3

kpc

I A galaxy with M = 1012M� has

rV ≈ 1Mpc

I A galaxy cluster with M = 1015M� has

rV ≈ 10Mpc

I The Sun has Φ(rV ) = 10−15 and a galaxy Φ(rV ) = 10−7



Galaxy rotation curves
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λg & 10−3 rH or λg . 10−6 rH
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Vainshtein density

Average density within rV of mass M(rV ) is

ρV =
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g ∼ ρ0crit (λg = rH)

Potentials are given by relative density fluctuations
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ρ̄
∼ a3
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Observational consequences

Credit: Max Tegmark
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I Linear bimetric gravity (with β1) predicts runaway
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I GR restored at densities higher then ρ0crit
I Currently no need to give up on bimetric gravity

I Observations at large scales crucial
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