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• To solve the problem a heating 
mechanism should be included into the 
cluster such as:

1. Conductive heat flux to the core1.

2. Turbulence produced by cluster 
merger2 or galaxy motion3.

3. Shocks and sound waves4, mixing of 
gas between ICM and the hot content 
of bubbles5 ,produced by AGN.
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by the AGN cascades due to the viscosity which lids to warm up the ICM1.

• We assume that there are two important time scales (       and        ) 
in the (ICM), those which establish a probability distribution.

• The main driver of thermal distribution in ICM is a balance of cooling 
and heating, governed by  

theat
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• We have proposed a concrete solution to the cooling flow 
problem.

• The model predicts the cold gas mass which is consistent with 
observed stellar masses of brightest cluster galaxies.

• Values of α  are consistent with viscosity parameters in 
simulations as well as observed turbulent energy fraction in 
cluster cores.

• We invite you to use our CpH model, which is publicly available 
at XSPEC manual, in your future X-ray spectral fitting.
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