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Localized Objects in a 3-Dimensional Chern-Simons Matter Model from a 

Consistent Truncation of 11-Dimensional Supergravity over 𝑨𝒅𝑺𝟒 × 𝑺𝟕/𝒁𝒌 

31th IPM Physics Spring

Conference (Virtual)

For 11-dimensional (11D) supergravity (SUGRA) over 𝑨𝒅𝑺𝟒 × 𝑪𝑷𝟑 ⋉ 𝑺𝟏/𝒁𝒌, we include a new 4-form ansatz, composed mainly of the elements of the internal spcae. Solving the 11D supergarvity 

equations, we obtain a scalar Nonlinear Partial Differential Equation (NPDE) in Euclidean 𝑨𝒅𝑺𝟒 space. The resulting 𝑺𝑼(𝟒) × 𝑼(𝟏)-singlet (pseudo)scalars arise from probe (anti)M-branes wrapped 

around the internal space directions in the (Wick-rotated:WR) skew-whiffed (SW) background; and the resulting anti-M2-branes theory breaks all 32 supersymmetries (SUSYs) and parity of the 

original theory. Taking the backreaction on the external and internal spaces, the resulting bulk equations correspond to exactly marginal and marginally irrelevant boundary operators. Solving the 

equation, we write a closed solution for the massless (𝒎𝟐 = 𝟎) mode and an approximate solution for a massive mode (𝒎𝟐 = 𝟒𝟎) with math methods and especially the Adomian decomposition 

method (ADM), appropriate for near the boundary analyzes. The solutions have at least the 𝑺𝑶(𝟒) symmetry and present instantons responsible for tunneling among almost degenerate vacua of the 

bulk Higgs-like scalar potential or true-vacuum bubbles growing from the false vacuum in the form of bounce solutions. To realize the bulk singlet (pseudo)scalars and in particular supersymmetry 

breaking, we excahnge the three fundamental representations for gravitino and as a result, we realize the wished (pseudo)scalars in the spectrum after the branching of 𝑺𝑶(𝟖) → 𝑺𝑼(𝟒) × 𝑼(𝟏). As 

the same way, using the 𝐀𝐝𝐒𝟒/𝐂𝐅𝐓𝟑 correspondence rules, by concentrating on the 𝑼(𝟏) × 𝑼(𝟏) part of the original quiver gauge group of the 3D boundary Chern-Simons (CS) matter (ABJM) theory, 

taking just a boundary scalar and a fermion field, introducing dual marginal (𝜟+ = 𝟑) and irrelevant (𝜟+ = 𝟖) boundary operators, and deforming the boundary action with them, we finally find 

exact solutions with finite actions which are in fact small instantons on a three-sphere with raduis at infinity. In addition, we confirm the  bulk state-boundary operator correspondence in the leading 

order and match elements of the bulk and boundary solutions. Indeed, these solutions are instances of  non-SUSY unstable AdS vacua with applications in early universe cosmology, inflationary 

models and tunnelings (collapsing vacuum bubbles leading to big-crunch singularities). 

Abstract

Scalar Equations in 𝐀𝐝𝐒𝟒 Space from Reduction of 11D SUGRA

Starting from 11D SUGRA in the geometrical background 𝑨𝒅𝑺𝟒 × 𝑺𝟕/𝒁𝒌, when the internal 

space is considered as a 𝑺𝟏/𝒁𝒌 fiber-bundle on 𝑪𝑷𝟑, we empoly the following anstanz for its 

4- form [1]: 

 𝑮𝟒 = 𝑹 𝒇𝟏 𝑮𝟒
(𝟎)

+  𝑹𝟒 𝒅𝒇𝟐 ∧ 𝑱 ∧ 𝒆𝟕 +  𝑹𝟒 𝒇𝟑 𝑱𝟐; (1) 

where 𝒆𝟕 is the seventh vielbein of the internal space, 𝑱 is the Kähler form on 𝑪𝑷𝟑, 𝑹 =

𝟐𝑹𝑨𝒅𝑺 is the 𝑨𝒅𝑺 curvature radius, 𝑮𝟒
(𝟎)

= 𝒅𝓐𝟑
(𝟎)

= 𝑵𝓔𝟒 is for the ABJM [2] background 

with 𝑵 = (𝟑/𝟖)𝑹𝟑 units of flux quanta on the internal space, 𝓔𝟒 is the bulk unit-volume 

form and 𝒇𝒊’s with 𝒊 = 𝟏, 𝟐, 𝟑 are scalar functions in the external space. Having the anstaz 

(1), from the Bianchi identity and Euclidean 11D equation, 𝒅𝑮𝟒 = 𝟎, 𝒅𝑮𝟕 −
𝒊

𝟐
𝑮𝟒 ∧ 𝑮𝟒 = 𝟎, 

we obtain 

 𝒇𝟏 =
𝒊

𝟐
 𝑹𝟐 𝒇𝟑

𝟐 + 𝒊 𝑪𝟏, 𝒇𝟑 = 𝒇𝟐 +
𝑪𝟐

𝑹
 (2)  

 ∎𝟒𝒇𝟑 −
𝟒

 𝑹𝟐
 𝟏 ± 𝟑𝑪𝟏 𝒇𝟑 − 𝝀 𝒇𝟑

𝟑 = 𝟎, (3) 

where 𝑪𝟏, 𝑪𝟐 and ... are the real constants, 𝝀 = 𝟔, ∎_4 is the Laplacian in 𝐄𝑨𝒅𝑺𝟒 space and 

the upper and lower sign (±) behind the sentence containing 𝑪𝟏 shows the WR and SW 

versions of the background, respectively. Note also that with 𝑪𝟏 = 𝟏 (and of course 𝒇𝟑 = 𝟎) 

the ABJM background is realized, and that ± 𝑪𝟐/𝟐 = ± −𝒎 𝟐/𝝀  (with 𝒎 𝟐𝑹𝑨𝒅𝑺
𝟐 = (𝟏 ±

𝟑 𝑪𝟏)) are in fact homogenous vacua and so, the (pseudo)scalar is Higgs-like and the RHS 

relation in (2) imposes spontaneous symmetry breaking, where 𝒇 (from now on, 𝒇𝟑 ≡ 𝒇) acts 

as fluctuation around the homogeneous vacua. 

Taking Backreaction, Resulting Equations and Solutions

Since topological objects such as instantons should not backreact on the background 

geometry, such solutions are obtained by solving the equations resulting from zeroing 

the energy-momentum tensors of Einstein's equations with the main bulk equation (3), 

simultaneously. In fact, from zeroing the external and internal components of the EM 

tensors of the Einstein’s equations, we obtain 

 ∎𝟒𝒇 +
𝟒

𝑹𝟐
 𝟒 ± 𝟏𝟐 𝑪𝟏 𝒇 + 𝟐𝟒 𝒇𝟑 = 𝟎, (4)  

 ∎𝟒𝒇 +
𝟒

𝑹𝟐
 𝟏 ± 𝟗 𝑪𝟏 𝒇 + 𝟏𝟖 𝒇𝟑 = 𝟎. (5) 

As a result, from solving the last two equations with the main bulk one (3), we have the 

equation ∎𝟒𝒇 − 𝒎𝟐𝒇 = 𝟎  (6). In fact, from satisfying the equations (3) and (4) at the 

same time, that is to include the backreaction of the solution on the external space, we 

have 𝒎𝟐𝑹𝑨𝒅𝑺
𝟐 = 𝟎, which corresponds to the exactly marginal operator in the boundary 

theory; And in the same way, for solving the equations (4) and (5) with (3), that is taking 

the backreaction of the whole 11D space, we read the modes of 𝒎𝟐𝑹𝑨𝒅𝑺
𝟐 = 𝟏/𝟐 and 

𝒎𝟐𝑹𝑨𝒅𝑺
𝟐 = 𝟐/𝟗 corresponding to the marginally irrelevant bounday operators 𝚫± =

(𝟑/𝟐) ± ( 𝟏𝟏/𝟐) and 𝚫± = (𝟑/𝟐) ± (  𝟖𝟗/𝟗 /𝟐). Meanwhile, in upper-half Poincar𝒆′ 

coordinates, 𝒅𝒔𝑬𝑨𝒅𝑺𝟒

𝟐 =
𝑹𝟐

𝟒𝒖𝟐
 𝒅𝒖𝟐 + 𝒅𝒙𝟐 + 𝒅𝒚𝟐 + 𝒅𝒛𝟐 , an exact solution of (6) reads 

 𝒇(𝒖, 𝒖   ) = 𝑪 𝚫+
 

𝒖

𝒖𝟐 + (𝒖   − 𝒖   𝟎)𝟐
 
𝚫+

,    𝑪 𝚫+
=

𝚪(𝚫+)

𝝅𝟑/𝟐 𝚪(𝝂)
. (7) 

 

Solving the Nonlinear Massive Equation by ADM

We can write the equation (2) by the (conformal) change 𝒇 = (𝒖/𝑹𝑨𝒅𝑺) 𝒈 as follows: 

   
𝝏𝟐

𝝏𝒓𝟐
+

𝟐

𝒓

𝝏

𝝏𝒓
 +

𝝏𝟐

𝝏𝒖𝟐
−

 𝟐 + 𝒎𝟐 

𝒖𝟐
  𝒈 𝒖, 𝒓 − 𝝀 𝒈(𝒖, 𝒓)𝟑 = 𝟎, (8) 

using the spherical coordinates with 𝒓 = |𝒖   |, 𝒖   = (𝒙, 𝒚, 𝒛). In fact, for the last 

equation for 𝒇, employing the anstazs as 𝝃 = 𝒖𝟏/𝟐 𝒇(𝒓) with 𝒇(𝒖, 𝒓) = 𝑭(𝝃) (see [2]) 

and also using the self-similar reduction method (see [3]) with 𝝃 = 𝒓/𝒖, the 

normalizable solutions up to the first order of perturbation expansion, 

respectively, read 

 𝒇(𝟏)(𝒖, 𝒓) = 𝑪𝟑  𝒖 𝒇(𝒓)𝟐 𝚫+ , (9)  

 𝒇 𝟏  𝒖, 𝒓 =  𝑪𝟒 + 𝑪𝟓  𝐥𝐧  
𝒓

𝒖
   

𝒖

𝒓
 
𝚫+

. (10) 

But, here we use the ADM to obtain perturbative solutions in the form of series 

expansion. ADM [4] is a math method especially for solving NPDEs. In fact, for 

normalizable solutions for massive modes near the boundary (𝒖 = 𝟎),  we use 

 

𝒈𝟎 𝟎, 𝒓 = 𝒈 𝟎, 𝒓 − 𝒖
𝝏𝒈 𝟎, 𝒓 

𝝏𝒖
,

𝒇 𝒖 → 𝟎, 𝒓 ≡  𝒇 𝟎, 𝒓 = 𝒇 𝒓  𝒖𝚫+ ≈ 𝑪 𝚫+
 
𝒖

𝒓
 
𝚫+

 

(11) 

in the following iteration equation: 

  ∎   𝟒𝒈𝒏+𝟏 − 𝐌 𝟐 𝒈𝒏+𝟏 =  

∞

𝒏=𝟎

𝑨𝒏,  ∎   𝟒 ≡ 𝝏𝒊𝝏𝒊 + 𝝏𝒖𝝏𝒖, 𝐌 𝟐 ≡
 𝟐 + 𝒎𝟐 

𝒖𝟐
, (12) 

Cont. Solving the Nonlinear Massive Equation by ADM

It is notable that equation (8) without the term 𝐌 𝟐 has the following exact solution: 

 𝒈 𝟎(𝒖, 𝒖   ) =
𝟐

 𝟑
 

𝒃𝟎

−𝒃𝟎
𝟐 + (𝒖 + 𝒂𝟎)𝟐 + (𝒖   − 𝒖   𝟎)𝟐

, (14) 

where 𝒖   𝟎 ≡ (𝒃𝟏, 𝒃𝟐, 𝒃𝟑) with 𝒂𝟎 and 𝒃𝒊 as the modules of the solution, and could be 

represented as the size and location of the instanton on the boundary, respectively. 

The latter solution has the behavior near the boundary as follows: 

 𝒈 𝟎 𝒖 → 𝟎, 𝒓 ≡ 𝒈 𝟎 𝟎, 𝒓 =
𝟐

 𝟑

𝒃𝟎

 𝒂𝟎
𝟐 − 𝒃𝟎

𝟐 + 𝒓𝟐 
 𝟏 −

𝟐 𝒂𝟎

 𝒂𝟎
𝟐 − 𝒃𝟎

𝟐 + 𝒓𝟐 
 𝒖 ; (15) 

and this can be used, instead of  𝒈 𝟎, 𝒓  in (11), as the initial data in ADM. 

Solutions of the Equation for 𝒎𝟐 = 𝟎 and 𝒎𝟐 = 𝟒𝟎 by ADM

In addition to the case including backreaction, where the massless mode appears, it 

is possible to realize such a state 𝒎𝟐 = 𝟎 in the SW version of (3) with 𝑪𝟏 = 𝟏/𝟑 in 

probe limit (ignoring the backreaction). In the same way, the massive mode 𝒎𝟐 = 𝟒𝟎 

is realized in probe approximation in the WR version of (3) with 𝑪𝟏 = 𝟏𝟑. In this case, 

using the equation (12), the initial conditions from (11) for 𝚫+ = 𝟑, 𝟖 and as a result, 

using the initial data 𝒇𝟎 =  𝟏 − 𝚫+  𝒇 𝒓  𝒖𝚫+ , the solution of eq. (8) up to the third 

order in the perturbation series expansion for the massive and massless mode reads 

 𝒇 𝟑  𝒖, 𝒓 = −𝟔 𝒇 𝒓  𝒖𝟑 +
𝟏

𝟒
𝛁 𝟐𝒇 𝒓  𝒖𝟓 + 𝑶(𝒖𝟕), (16)  

 𝒇 𝟑  𝒖, 𝒓 = −𝟐𝟏 𝒇 𝒓  𝒖𝟖 +
𝟐𝟖

𝟏𝟑𝟓
𝛁 𝟐𝒇 𝒓  𝒖𝟏𝟎 + 𝑶 𝒖𝟏𝟐 , (17) 

respectively, where 𝒅𝟐 𝒅𝒓𝟐 + 𝟐 (𝒓 𝒅𝒓) ≡ 𝛁 𝟐. In the same way and writing other 

iteration equations from (8), we obtain the following solutions for the massless and 

massive modes, respectively: 

 𝒇 𝟏  𝒖, 𝒓 =
𝟗

𝟒
 

𝒃 𝟎 𝒖

𝒓𝟐 − 𝒃 𝟎
𝟐
 

𝟑

,   𝒇 𝟏  𝒖, 𝒓 = 𝟑  
𝒄 𝟎 𝒖

𝒓𝟐
 
𝟑

, (18)  

 𝒇 𝟏  𝒖, 𝒓 ≅
𝟐

𝟏𝟎𝟎

𝒖𝟖

𝒓𝟏𝟑+𝟓𝐧𝟎
. (19) 

 
Dual Symmetries and Solutions with 𝐀𝐝𝐒𝟒/𝐂𝐅𝐓𝟑 correspondence

The original theory has the geometry 𝑨𝒅𝑺𝟒 × 𝑺𝟕/𝒁𝒌 (→ 𝑪𝑷𝟑 ⋉ 𝑺𝟏/𝒁𝒌), isometric 

symmetry 𝑺𝑶(𝟑, 𝟐) in the Minkowski space, the internal symmetry  𝑺𝑶 𝟖 ≡ 𝐆 (→

𝑺𝑼(𝟒) × 𝑼(𝟏) ≡ 𝑯) and the supersymmetry 𝓝 = 𝟖 → 𝟔. The 4-form ansatz (1) is 

actually attributed to the (anti)membranes (in the case where the background is 

WR, antimembranes and in the case where the field is SW, membranes) that are 

wraped around mixed internal and external directions and so break all SUSY’s 

and parity, and the resulting theory is for anti-M2-branes. Likewise, with the 

resulting singlet (pseudo)scalars and equations in the 𝐄𝑨𝒅𝑺𝟒 space that does not 

explicitly include any elements of the internal space, we actually have a consistent 

truncation. As a result, our bulk solutions preserve at least SO(4) symmetry, 

which by interpreting them as bubble solutions, the four parameters related to 

the breaking of scale and translational symmetries (i.e. 𝒂𝟎 and 𝒖   𝟎) are responsible 

to move the bubble around in the 4D bulk and size of the instanton. 

To realize the resulting 𝑯-singlet (pseudo)scalars in the 11D SUGRA spectrum and 

SUSY breaking, we swap the three fundamental representations (reps) 𝟖𝒗, 𝟖𝒔, 𝟖𝒄 

of 𝑺𝑶 𝟖  for gravitino. As the same way, we focus on the 𝑼(𝟏) × 𝑼(𝟏) part of the 

original quiver gauge group and take just one scalar and one fermion (noting that 

the singlet (pseudo)scalar or fermion we consider could be taken from 

decomposing the eight (pseudo)scalars or fermions as 𝑿𝑰 → (𝚽𝒏, 𝚽, 𝚽 ), with 𝚽 

representing either 𝝍 or 𝒀, 𝑰, 𝑱. . . = (𝟏, . . . 𝟔, 𝟕, 𝟖) = (𝒏, 𝟕, 𝟖) and 𝚽 = 𝚽𝟕 + 𝒊 𝚽𝟖, 

𝚽† = 𝚽 , transforming in the rep (𝟔𝟎, 𝟏𝟐, 𝟏−𝟐) under 𝑮 → 𝑯) in the boundary CS 

matter theory, and will find dual solutions. 

On the other hand, for a bulk (pseudo)scalar with near the boundary behavior 𝑓(𝑢, 𝑢  ) ≈ 𝛼(𝑢  ) 𝑢Δ− +

𝛽(𝑢  ) 𝑢Δ+ (noting that for the massless and massive modes, only mode 𝛽 is normalizable), we write the 

AdS/CFT dictionary as 

 

⟨𝒪Δ+
〉𝛼 = −

𝛿𝑊 𝛼 

𝛿𝛼
= 𝛽,             ⟨𝒪Δ−

〉𝛽 = −
𝛿𝑊  𝛽 

𝛿𝛽
= 𝛼,  

𝑊 [𝛽] = −𝑊[𝛼] −  𝑑3𝑢    𝛼(𝑢  ) 𝛽(𝑢  )

(20) 

where 𝑊[𝛼] (𝑊 [𝛽]) is the generating functional of the connected correlator of the operator 𝒪Δ+
 (𝒪Δ−

) 

on the usual (dual) boundary CFT 3 with Δ+ (Δ−) quantization. 

On the other hand, for a bulk (pseudo)scalar with near the boundary behavior 

𝒇(𝒖, 𝒖   ) ≈ 𝜶(𝒖   ) 𝒖𝚫− + 𝜷(𝒖   ) 𝒖𝚫+  (noting that for the massless and massive modes, 

only mode 𝜷 is normalizable), we write the AdS/CFT dictionary as 

 
⟨𝓞𝚫+

〉𝜶 = −
𝜹𝑾 𝜶 

𝜹𝜶
= 𝜷,             ⟨𝓞𝚫−

〉𝜷 = −
𝜹𝑾  𝜷 

𝜹𝜷
= 𝜶,  

𝑾 [𝜷] = −𝑾[𝜶] −  𝒅𝟑𝒖     𝜶(𝒖   ) 𝜷(𝒖   )

(20) 

where 𝑾[𝜶] (𝑾 [𝜷]) is the generating functional of the connected correlator of the 

operator 𝓞𝚫+
 (𝓞𝚫−

) on the usual (dual) boundary CFT 𝟑 with 𝚫+ (𝚫−) quantization. 
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Dual Solutions in a Boundary 3D CS Matter Model

Considering a singlet scalar 𝒀 = 𝝋 = 𝒉(𝒓) 𝐈𝑵 and a singlet fermion 𝝍 (depending on 

the case) and 𝑼(𝟏) part of the gauge group, we write the boundary action as follows: 

 𝑺(𝒋) = 𝑺𝑪𝑺
+ −  𝒅𝟑𝒖     𝒕𝒓 𝑫𝒌𝒀

†𝑫𝒌𝒀 + 𝒕𝒓 𝒊𝝍  𝜸𝒌𝑫𝒌𝝍 + 𝓦𝚫
 𝒋 

 ,   𝓦𝚫
 𝒋 

= 𝜶 𝓞𝜟+

 𝒋 
,  (21) 

where the integral of 𝓦𝚫
 𝒋 

 is 𝑾 in (20) and represents the deformations (labeled by 

𝒋 = 𝒂, 𝒃, … , 𝒈) that we do with different 𝑯-singlet operators; and the CS Lagrangian is 

 𝓛𝑪𝑺
+ =

𝒊𝒌

𝟒𝝅
𝜺𝒊𝒋𝒌 𝒕𝒓  𝑨𝒊

+𝝏𝒋𝑨𝒌
+ +

𝟐𝒊

𝟑
𝑨𝒊

+𝑨𝒋
+𝑨𝒌

+ ;

  

(22) 

and also 𝑫𝒌𝚽 = 𝝏𝒌𝚽 + 𝒊𝑨𝒌 𝚽 − 𝒊𝚽 𝑨 𝒌 and 𝑭𝒊𝒋 = 𝝏𝒊𝑨𝒋 − 𝝏𝒋𝑨𝒊 + 𝒊 𝑨𝒊, 𝑨𝒋 . 

Marginal Deformations and Dual Solutions for the Massless Mode

In this case, using both terms 𝐒𝑪𝑺 + 𝐒 𝑪𝑺 instead of 𝐒𝑪𝑺
+  in action (21) and noting that 𝑭𝒊𝒋

− = 𝟎 and 

as a result 𝑨𝒊
− = 𝟎 and also setting 𝜶 = 𝟏 for simplicity, in addition to previously considered 

marginal operators, with 𝓞𝟑
(𝒈)

= 𝒕𝒓(𝝋𝝋 ) 𝒕𝒓(𝝍𝝍 )𝟏/𝟐 𝜺𝒌𝒊𝒋𝜺𝒊𝒋 𝑨𝒌
+, the resulting equations for 

scalar (𝝋 ), fermion (𝝍 ) and unit (𝑨𝒌
+) become 

 𝝏𝒌𝝏
𝒌𝝋 − 𝝋 𝒕𝒓(𝝍𝝍 )𝟏/𝟐 𝜺𝒌𝒊𝒋𝜺𝒊𝒋 𝑨𝒌

+ = 𝟎,

  

(23) 

 𝒊 𝜸𝒌𝝏𝒌𝝍 +
𝝍

𝟐
 𝒕𝒓(𝝍𝝍 )−𝟏/𝟐 𝒕𝒓(𝝋𝝋 )𝜺𝒌𝒊𝒋𝜺𝒊𝒋 𝑨𝒌

+ = 𝟎, (24) 

 
𝒊𝒌

𝟒𝝅
𝜺𝒌𝒊𝒋𝑭𝒊𝒋

+ − 𝒕𝒓(𝝋𝝋 ) 𝒕𝒓(𝝍𝝍 )
𝟏
𝟐 𝜺𝒌𝒊𝒋𝜺𝒊𝒋 + 𝟐 𝝍  𝜸𝒌 𝝍 + 𝒊 𝝋 𝝏𝒌𝝋  −  𝝏𝒌𝝋 𝝋  = 𝟎, (25) 

which in the last equation we have used 𝝋 ≠ 𝝋 = 𝝋†which is allowed in Euclidean space; and 

𝜸𝒌 = (𝝈𝟐, 𝝈𝟏, 𝝈𝟑) are Euclidean gamma matrices. From the solving of equations (23), (24) and 

(25) together, considering 𝝋 = 𝒉(𝒓) 𝑰𝑵, 𝝋† = 𝒂𝟓 𝑰𝑵, solution is 

 𝝍 = 𝒂𝟑

𝒂 + 𝒊(𝒖   − 𝒖   𝟎). 𝜸   

 𝒂𝟐 + (𝒖   − 𝒖   𝟎)𝟐 𝝇=𝟑/𝟐
 
𝟏
𝟎
 , 𝒉 =

𝟑

𝟒
 

𝒂𝟔

𝒂𝟐 + (𝒖   − 𝒖   𝟎)𝟐
 , (26-7) 

 𝑨𝒌
+ = 𝜺𝒌𝒊𝒋 𝜺

𝒊𝒋𝑨+ 𝒓 , 𝑨+ =
𝟑

𝟒

𝒂

𝒂𝟐 + (𝒖   − 𝒖   𝟎)𝟐
, (28) 

where 𝒂𝟎, 𝒂𝟏, 𝒂𝟐, . .. are boundary constants and 𝑨+(𝒓) is a scalar function on the boundary.  

As a result, we have  

 〈𝓞𝟑
(𝒈)

〉𝜶 =
𝟗

𝟏𝟔

𝒂 𝒂𝟑𝒂𝟓𝒂𝟔

 𝒂𝟐 + (𝒖   − 𝒖   𝟎)𝟐 𝟑
, (29) 

which can be matched with the bulk solution on the LHS of (18); Or make it correspond to the 

solution (7) for 𝚫+ = 𝟑, in which case the boundary solution can be considered as an instanton 

at the conformal point 𝒖 = 𝒂. In the same way, the correction to the corresponding action can 

be calculated based on the above solutions, which results in: 

 𝑺𝟑
(𝒈)

= −
𝟏

𝟐
 𝓞𝟑

 𝒈 
𝒅𝟑𝒖   = −

𝟗𝝅

𝟐
 

∞

𝟎

𝒂 𝒂𝟑𝒂𝟓𝒂𝟔 𝒓𝟐

 𝒂𝟐 + 𝒓𝟐 𝟑
 𝒅𝒓 ⇒ 𝑺 𝒎𝒐𝒅𝒊.

 𝒈 
= −

𝟗

𝟑𝟐
𝝅𝟐𝒂; (30) 

(in the last step, for simplicity, we set all constant parameters equal) and this is a finite value 

that represents an instanton with size 𝒂 ≥ 𝟎 (in the limit 𝒂 → 𝟎, a small instanton) in the 

center (𝒖   𝟎 = 𝟎) of a three-sphere with radius 𝒓 is at infinity (𝑺∞
𝟑 ). 

Irrelevant Deformations and Dual Solutions for the Massive Mode

For the Higgs-like mode 𝒎𝟐 = 𝟒𝟎, we can perform irrelevant deformations corresponding to 

the Dirichlet boundary condition with several 𝚫+ = 𝟖 operators [4] such as 

 
𝓞𝟖

 𝒂 
= 𝒕𝒓(𝝍𝝍 )𝟒, 𝓞𝟖

 𝒃 
=  𝒕𝒓(𝝋𝝋 )𝟒 𝒕𝒓(𝝍𝝍 )𝟐,

 𝓞𝟖
 𝒆 

= 𝒕𝒓(𝝍𝝍 ) 𝒕𝒓(𝝋𝝋 )𝟑 𝑭+ ∧ 𝑨+, 𝓞𝟖
 𝒇 

= 𝒕𝒓(𝝋𝝋 )𝟔 𝜺𝒊𝒋 𝑭𝒊𝒋
+.   

  

(31) 

For example, with 𝓞𝟖
 𝒇 

, leaving aside the fermionic part of the action and performing the 

deformation according to (21), the equations of motion for 𝝋  and 𝑨𝒊
+ are as follows: 

 𝝏𝒌𝝏
𝒌𝝋 − 𝟔 𝜶 𝝋 𝒕𝒓(𝝋𝝋 )𝟓 𝜺𝒊𝒋 𝑭𝒊𝒋

+ = 𝟎,
𝒊𝒌

𝟒𝝅
𝜺𝒌𝒊𝒋𝑭𝒊𝒋

+ + 𝒊 𝝋 𝝏𝒌𝝋  −  𝝏𝒌𝝋 𝝋  = 𝟎. (32-3) 

In the case with 𝝋 = 𝝋 = 𝒉(𝒓) 𝑰𝑵, the solution of the gauge part can be  

 𝑭+ ≡ 𝜺𝒊𝒋 𝑭𝒊𝒋
+ =  

𝒂

𝒂𝟐 + (𝒖   − 𝒖   𝟎)𝟐
 
𝟐

, (34) 

which, with a non-zero finite 𝒂, it satisfies the condition 𝑭+(𝒓 → ∞) → 𝟎; And then considering 

𝑭+ = −𝒉𝟒 and 𝜶 = 𝒕𝒓(𝝋𝝋 )−𝟓, the equation (32) becomes: 

 𝝏𝒌𝝏
𝒌𝒉 + 𝟔 𝒉𝟓 = 𝟎 ⇒ 𝒉 =  

𝟏

𝟐
 
𝟏/𝟒

 
𝒂

𝒂𝟐 + (𝒖   − 𝒖   𝟎)𝟐
 
𝟏/𝟐

; (35) 

And as a result, 〈𝓞𝟖
 𝒇 

〉𝜶 = 𝒂𝟗  
𝒂

𝒂𝟐+(𝒖   −𝒖   𝟎)𝟐
 
𝟖

(36), with 𝒂𝟗 = 𝟏/𝟖, which in the limit of 𝒂 → 𝟎 and 

𝒓 → ∞ coincides structurally with the bulk near the boundary solutions (17) and (19). Also, 

this boundary solution can be considered as an instanton that sits at the conformal point of 

𝒖 = 𝒂, which in this case matches with the bulk solution (7) with 𝚫+ = 𝟖.  

Moreover, the (finite) value of the action based on the recent solution reads 

 𝑺𝟖
(𝒇)

= 𝟓 𝓦𝟖
(𝒇)

𝒅𝟑𝒖   =
𝟐𝟎𝝅

 𝟐
 

∞

𝟎

𝒂𝟑 𝒓𝟐

 𝒂𝟐 + 𝒓𝟐 𝟒
 𝒅𝒓 ⇒ 𝑺 𝒎𝒐𝒅𝒊.

 𝒇 
=

𝟓𝝅𝟐

𝟒 𝟐
. (37) 

where the Adomian polynomials 𝑨𝒏, which come from nonlinear terms and act as 

perturbations, are as follows in the case of equation (8) - for details, see [3] and [1]  

  𝑨𝟎 = 𝟔𝒈𝟎
𝟑, 𝑨𝟏 = 𝟏𝟖 𝒈𝟎

𝟐 𝒈𝟏, 𝑨𝟐 = 𝟏𝟖  𝒈𝟎
𝟐 𝒈𝟐 + 𝒈𝟎 𝒈𝟏

𝟐 , ….  . (13) 

As the same way, one can also write other iteration equations from equation (8) [4]. In 

this way, a series solution can be expanded to the nth order as 𝒇(𝒏) =  𝒇𝒏
𝒏
𝒏=𝟎 . 

More Points

According to the general form of solutions (26) for fermion (𝝍), (28) for gauge field (𝑨+) 

(or (34) for 𝑭+) and (35) for scalar (𝝋), we may have a type of Bose-Fermi duality in the 

limit of solutions and correspondence as 𝒕𝒓 𝝍𝝍  ~𝒕𝒓(𝝋𝝋 )𝟐~𝑭+and 𝝍 ∼ 𝑨+.  

As a result, the potentials attributed to the boundary deformations will be unbounded 

from below, which accept Fubini-like instantons. In fact, the scalar potential from equation 

(3) is 𝑽 𝒇 =
𝒎𝟐

𝟐
𝒇𝟐 +

𝝀

𝟒
𝒇𝟒, which with 𝒎𝟐 < 𝟎 is a double-well potential that accepts 

instanton solutions or Coleman-Di Lucia bonuses. The corresponding bulk solutions can 

actually describe vacuum decay or quantum tunneling and correspond to the growth and 

expansion of true vacuum bubbles in the background of the bulk false vacuum; and the 

final fate of such bubbles will be a big collapse or crunch in the anti-de sitter space. 
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