Boron-rich enhanced ambient CO₂ capture and storage of boron–carbon–nitride hybrid nanotubes

Fatemeh Ershadi Moghaddam¹, Farzaneh Shayeganfar^{1,2} and Ali Ramazani³

¹Department of Energy Engineering and physics, Amirkabir University of technology, Tehran, Iran ²Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 10485, USA. E-mail: fshayeganfar@umich.edu ³Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract

Increasing carbon dioxide (CO_2) emissions as the most challenging greenhouse gas is considered as a major cause of global warming and ocean acidification. Different strategies against anthropogenic emissions of CO_2 have been applied to capture and reduce the CO_2 effect on the atmosphere. To this end, we study the adsorption of CO₂ on boron-rich structures of boron-carbon-nitride (BCN) hybrid nanotubes by the implementation of an ab initio approach based on density functional theory (DFT). Three different boron-rich BC₂NNT, BC₄NNT, and parallel BCN (p-BCN) nanotubes are investigated as hosts for the capture and sequestration of CO₂. The analysis of calculations shows that the boron-rich BC_4N nanotube adsorbs CO₂ physically, while in the boron-rich BC_2N and p-BCN nanotubes, both chemisorption and physisorption occurred. In the chemisorption process, a linear CO_2 molecule is bent over, and a new bond is formed between oxygen and boron antisite (BN) in boron-rich nanotubes due to electron back donation between CO_2 and nanotubes as a result of orbital mixing of oxygen and boron atoms. Moreover, our findings show that the sensitivity factor (SF) and adsorption energy for boron-rich BC_2N nanotubes are higher than those of other hybrid nanotubes and CO₂ free energy at room temperature. Elaborating on the stability and recycling of host material challenges suggests that the boron-rich hybrid nanotubes could be a good candidate for capturing CO₂ under ambient conditions

(a) Electronic band structure and TDOS of boron-rich BC_2NNT (8,0) without CO_2 before relaxation and (b) after relaxation with CO_2 , where O up BN-parallel site, (c) where C up BN-parallel site, and (d) where C up BNoblique site. The red dashed lines show the Fermi level

> PDOS of boron-rich BC_2NNT (8,0) nanotubes for (a) and (d) isolated nanotubes, (b) and (e) where CO_2 is placed at 7.4 Å far from the nanotube, (c) for the physisorption process, where O up BN-parallel site, and (f) for chemical interaction, where C up BN-oblique site. The red dashed lines show the Fermi level