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Hadronic bound state 

 

A nonperturbative Hamiltonian of bound state refers to a Hamiltonian operator 

that cannot be treated using perturbation theory. Perturbation theory is a 

mathematical approach used to solve problems when the Hamiltonian can be 

separated into a solvable unperturbed part and a perturbation that is small 

compared to the unperturbed part. Solving nonperturbative Hamiltonians typically 

requires the use of more advanced techniques, such as numerical methods or 

approximation schemes specifically designed for nonperturbative systems, which 

is a great deal of interest in nuclear and particle physics. We calculate the mass 

spectrum and constituent mass of particles in a bound state using the Bethe–

Salpeter equation with 𝑈(𝑟) = 𝑈𝑣(𝑟) + 𝑈𝑠(𝑟) potential of interaction at high 

energy and relativistic limits. Therefore, the most essential issue in theoretical 

particle research is to explain the Einsteinian adjustment of higher bound states, 

in order to determine the characteristics of relativistic effects within the potential 

interaction and kinetic energy. We present the method based on quantum field 

theory and Feynman path integral to calculate the mass spectra of hadrons. As we 

know, the long-range behavior of the propagator function of the related currents 

with the specific quantum numbers can determine the mass spectra of hadronic 

bound states. The presentation of the propagator in quantum field theory as a 

functional integral allows us to average over the external field. This approach is 

very close to the Feynman functional path integral  in quantum physics, where 

relativistic effects are not considered. By the side of the path integral, the 

Feynman diagram determines the interaction potential within the exchange of the 

mass and the field. We explain the related current of charged particles in the 

hadronic state and represent the propagator in the form of the corresponding 

current by averaging over the field 𝐀  for two bounded particles. This defines the 

kernel function of two charged particles with the rest masses. Then we can 

determine the two-point function by averaging over the field П(𝑟 − 𝑟 )́ =
〈𝐺𝑚𝑐

𝐺𝑚�̅�
′ 〉𝑨. By the variational method, the two-point function presents in the form 

of path integral, which is like Feynman's functional in non-relativistic quantum 

physics. The two-point function and the propagator at the limited distant 𝑥 → 0 

present the Feynman path integral for the motion of particles with masses 𝜇1, 𝜇2 

in the quantum theory with the 𝑈𝑖,𝑗 potential interactions. The total potential 

interaction within the relativistic corrections reads 
 

𝑊𝑖,𝑗 =
𝑔2𝑖𝑖+𝑗

2
∬𝑑𝜏1𝑑𝜏2𝑍

𝑖 (𝜏1)𝐺(𝑍𝑖(𝜏1) − 𝑍𝑗(𝜏2))𝑍
𝑗(𝜏2)                                (1) 

 

where the functional integral is over the 4-dimensional spacetime, 𝐺(𝑍𝑖 − 𝑍𝑗)is 

the propagator of the field 𝐀, 𝑈1,1, 𝑈2,2 is the self-energy of interacted particles, 

and 𝑈1,2 is the interaction of particles with the field 𝐀 and we choose the 

dependence of Euclidean time 𝑟(0) on 𝜏 (proper time) for the composite particle 

as follows: 𝑟(0) = 𝑐(𝜏1 − 𝜏2)𝑢 = 𝑐𝜏𝑢.  Now let's proceed to defining the structure 

of the interaction Hamiltonian. The interaction between composite particles 

occurs through the exchange of gauge fields with the relativistic velocity of 

composite particles 𝑣(𝜏) =
𝜕 𝑟(𝜏)

𝜕𝜏  , so we will express the propagator in the 

standard form 𝐺(𝑞2 +
𝑠2

𝑐2
) ≈ ∫ 𝑑𝜂𝑒

−𝜂(𝑞2+
𝑠2

𝑐2
)∞

0
, and after integrating over 𝑑𝑞, we 

have the following for the interaction potential: 

 

 

 

𝑈𝑖,𝑗 =
𝑔2𝑖𝑖+𝑗

4𝜋
∬𝑑𝜏1𝑑𝜏2

𝛿(𝜏1−𝜏2)

|𝑟𝑖(𝜏1)−𝑟𝑗(𝜏2)|

 
+

𝑔2𝑖𝑖+𝑗

4𝜋
∑

𝑖𝑘

(2𝑘)!𝑐2𝑘
 
𝑘 ×  

 

× ∫ 𝑑𝜏
𝜕2𝑘

𝜕𝜏2𝑘

𝑡

0
|𝑟𝑖(𝜏1) − 𝑟𝑗(𝜏2)|

2𝑘−1
                                                                          (2) 

 

Now, we consider the case where the relative velocity is constant 

 

𝑣(𝜏) =
𝜕 𝑟(𝜏)

𝜕𝜏 = 0, 

 

in this case, the contribution of the nonperturbative correction to the interaction 

Hamiltonian is represented as a sum in equation (2)  

 

𝐼 = ∑
𝑖𝑘

(2𝑘)! 𝑐2𝑘

 

𝑘

𝜕2𝑘

𝜕𝜏2𝑘
|𝑟(𝜏 )|

2𝑘−1 

 

in this approximation, for different values of 𝑘, we obtain 

 

𝐼 =
ℓ̂2

𝑟3
+

9ℓ̂4

𝑟5
+ ⋯+

ℓ̂2𝑛

𝑟2𝑛+1
∏ (2𝑖 − 1)2𝑛

𝑖=1 , 

 

where ℓ̂ = [𝑟.⃗⃗  𝑣 ], ℓ̂ - is orbit momentum operator. Then, after doing a series of 

mathematical rewrites, we obtained a nonperturbative correction to the interaction 

Hamiltonian that is associated with the relativistic nature of the system. In 

particular, our system consists of hadronic particles moving relative to each other 

with a constant velocity.  

 

 

Splitting Hamiltonian of bound state 

 

The obtained correction to the Hamiltonian, related to the relativistic nature of the 

interaction, vanishes in the nonrelativistic limit as 𝑐 goes to infinity. In deriving 

the nonperturbative correction, we assumed a simple relationship between 

Euclidean and proper times for the constituent particles. In principle, in our 

approach, it is possible to consider any dependence of Euclidean time on τ. Hence, 

we will define the nonperturbative corrections to the Hamiltonian 

 

𝐻 = 𝐻0 + 𝐻𝑛𝑜𝑛𝑝𝑒𝑟. = 𝐻0 + 𝐻𝑛𝑜𝑛𝑝𝑒𝑟.
0 + 𝐻𝑛𝑜𝑛𝑝𝑒𝑟.

𝐿𝑆 + 𝐻𝑛𝑜𝑛𝑝𝑒𝑟.
𝑇𝑇   

 

as follows 

𝐻𝑛𝑜𝑛𝑝𝑒𝑟.
0 = 𝑈𝑣(𝑟) [

1

√1+
ℓ(ℓ+1)

𝑟2𝑐2

− 1]                                                                        (3) 

 

 Now, we define the nonperturbative corrections if the relative velocity is 

 

𝑣(𝜏) =
𝜕 𝑟(𝜏)

𝜕𝜏 ≠ 0,  

 

�̇�(𝜏) =
𝜕  𝑣(𝜏)

𝜕𝜏  
≠ 0,  

 

�̈�(𝜏) =
𝜕  𝑣(𝜏)

𝜕𝜏  
= 0 

 

and the contribution of the nonperturbative correction to the interaction 

Hamiltonian is represented based on the contribution with Thomas precession. 

Thomas precession is a relativistic effect that arises in the context of bound states, 

where particles are confined within a potential interaction. It occurs due to the 

combined effects of the relativistic motion of the particles and their intrinsic 

magnetic moments. Thomas precession causes a precession or rotation of the spin 

or angular momentum of the particles around the direction of their motion. This 

additional precession arises as a consequence of the relativistic time dilation and 

length contraction effects. So we define all terms based on quantum 

electrodynamics when charged particles undergo accelerated motion, quantities  
𝜕ℓ̂ 

𝜕𝜏
, 
𝜕2ℓ̂ 

𝜕𝜏2  and 
1

𝑐𝑟

𝜕ℓ̂ 

𝜕𝜏
 are related to the spin precession. This means that the accelerated 

motion of the charged particles can induce a precession of their spin, which in 

turn affects their dynamics and can lead to the emission of electromagnetic 

radiation. These quantities are associated with spin precession and read  

 
𝜕ℓ̂ 

𝜕𝜏
=

𝜕[𝑟.⃗⃗⃗   �⃗� ] 

𝜕𝜏
= [𝑟.⃗⃗  �̈� ]

 
,  

 

 
1

𝑐𝑟

𝜕ℓ̂ 

𝜕𝜏
=

1

𝑐
[𝑛.⃗⃗⃗   �̈� ] ,  

 

 
𝜕2ℓ̂ 

𝜕𝜏2 =
𝜕[𝑟.⃗⃗⃗   �⃗̇� ]

 

𝜕𝜏
= [𝑣.⃗⃗⃗   �̇� ]                                                                                         (4) 

 

where 𝑟 ⃗⃗ is the distance between the particles, 𝑣 = (�⃗� . 𝑣 )- is the relative velocity 

of particles. Then the interaction Hamiltonian associated with Thomas precession 

taking into account the above equations read 

 

𝐻𝑛𝑜𝑛𝑝𝑒𝑟.
𝐿𝑆 = −

𝑈𝑣(𝑟)

4

ℓ̂[𝑣.⃗⃗⃗   �⃗̇� ]
 

𝑣4 [3 ln(1 + 𝑣2) − 𝑣2 1−𝑣2

1+𝑣2]                                            (5) 

 

And 

 

𝐻𝑛𝑜𝑛𝑝𝑒𝑟.
𝑇𝑇 = −

𝑈𝑣(𝑟)

256

𝑟2  

𝑣6 (
1

√1−𝑣2
− 1)[𝑣.⃗⃗⃗   �̇� ]

2
[1 − √1 + 4𝑣2 + 8𝑣2 − 8𝑣4 +

8

3
𝑣6]  

                                                                                                                             (6) 

 

Parameter Ω =
[𝑣.⃗⃗⃗   �⃗̇� ]

 

𝑣2
 – is the frequency of Thomas precession. 
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