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ABSTRACT 

 

A nonperturbative Hamiltonian of bound state refers to a Hamiltonian operator that cannot be 

treated using perturbation theory. Perturbation theory is a mathematical approach used to solve 

problems when the Hamiltonian can be separated into a solvable unperturbed part and a 

perturbation that is small compared to the unperturbed part. Solving nonperturbative Hamiltonians 

typically requires the use of more advanced techniques, such as numerical methods or 

approximation schemes specifically designed for nonperturbative systems, which is a great deal of 

interest in nuclear and particle physics. We calculate the mass spectrum and constituent mass of 

particles in a bound state using the Bethe–Salpeter equation with 𝑈(𝑟) = 𝑈𝑣(𝑟) + 𝑈𝑠(𝑟) potential 

of interaction at high energy and relativistic limits. Therefore, the most essential issue in theoretical 

particle research is to explain the Einsteinian adjustment of higher bound states, in order to 

determine the characteristics of relativistic effects within the potential interaction and kinetic 

energy. We present the method based on quantum field theory and Feynman path integral to 

calculate the mass spectra of hadrons. As we know, the long-range behavior of the propagator 

function of the related currents with the specific quantum numbers can determine the mass spectra 

of hadronic bound states. The presentation of the propagator in quantum field theory as a functional 

integral allows us to average over the external field. This approach is very close to the Feynman 

functional path integral  in quantum physics, where relativistic effects are not considered. By the 

side of the path integral, the Feynman diagram determines the interaction potential within the 

exchange of the mass and the field. We explain the related current of charged particles in the 

hadronic state and represent the propagator in the form of the corresponding current by averaging 

over the field 𝐀  for two bounded particles. This defines the kernel function of two charged 

particles with the rest masses. Then we can determine the two-point function by averaging over 

the field П(𝑟 − 𝑟 )́ = 〈𝐺𝑚𝑐
𝐺𝑚�̅�

′ 〉𝑨. By the variational method, the two-point function presents in 

the form of path integral, which is like Feynman's functional in non-relativistic quantum physics. 

The two-point function and the propagator at the limited distant 𝑥 → 0 present the Feynman path 

integral for the motion of particles with masses 𝜇1, 𝜇2 in the quantum theory with the 𝑈𝑖,𝑗 potential 

interactions. The total potential interaction within the relativistic corrections reads 

𝑊𝑖,𝑗 =
𝑔2𝑖𝑖+𝑗

2
∬𝑑𝜏1𝑑𝜏2𝑍

𝑖 (𝜏1)𝐺(𝑍𝑖(𝜏1) − 𝑍𝑗(𝜏2))𝑍
𝑗(𝜏2)                                                           (1) 

where the functional integral is over the 4-dimensional spacetime, 𝐺(𝑍𝑖 − 𝑍𝑗)is the propagator of 

the field 𝐀, 𝑈1,1, 𝑈2,2 is the self-energy of interacted particles, and 𝑈1,2 is the interaction of particles 

with the field 𝐀 and we choose the dependence of Euclidean time 𝑟(0) on 𝜏 (proper time) for the 

composite particle as follows: 𝑟(0) = 𝑐(𝜏1 − 𝜏2)𝑢 = 𝑐𝜏𝑢.  Now let's proceed to defining the 

structure of the interaction Hamiltonian. The interaction between composite particles occurs 

through the exchange of gauge fields with the relativistic velocity of composite particles 𝑣(𝜏) =



𝜕 𝑟(𝜏)

𝜕𝜏  , so we will express the propagator in the standard form 𝐺(𝑞2 +
𝑠2

𝑐2) ≈ ∫ 𝑑𝜂𝑒
−𝜂(𝑞2+

𝑠2

𝑐2
)∞

0
, and 

after integrating over 𝑑𝑞, we have the following for the interaction potential: 

 

𝑈𝑖,𝑗 =
𝑔2𝑖𝑖+𝑗

4𝜋
∬𝑑𝜏1𝑑𝜏2

𝛿(𝜏1−𝜏2)

|𝑟𝑖(𝜏1)−𝑟𝑗(𝜏2)|

 
+

𝑔2𝑖𝑖+𝑗

4𝜋
∑

𝑖𝑘

(2𝑘)!𝑐2𝑘
 
𝑘 ∫ 𝑑𝜏

𝜕2𝑘

𝜕𝜏2𝑘

𝑡

0
|𝑟𝑖(𝜏1) − 𝑟𝑗(𝜏2)|

2𝑘−1
               (2) 

Now, we consider the case where the relative velocity is constant 𝑣(𝜏) =
𝜕 𝑟(𝜏)

𝜕𝜏 = 0, in this case, 

the contribution of the nonperturbative correction to the interaction Hamiltonian is represented as 

a sum in equation (2) 𝐼 = ∑
𝑖𝑘

(2𝑘)!𝑐2𝑘
 
𝑘

𝜕2𝑘

𝜕𝜏2𝑘
|𝑟(𝜏 )|

2𝑘−1, in this approximation, for different values of 

𝑘, we obtain 𝐼 =
ℓ̂2

𝑟3 +
9ℓ̂4

𝑟5 + ⋯+
ℓ̂2𝑛

𝑟2𝑛+1
∏ (2𝑖 − 1)2𝑛

𝑖=1 , where ℓ̂ = [𝑟.⃗⃗  𝑣 ], ℓ̂ - is orbit momentum 

operator. Then, after doing a series of mathematical rewrites, we obtained a nonperturbative 

correction to the interaction Hamiltonian that is associated with the relativistic nature of the 

system. In particular, our system consists of hadronic particles moving relative to each other with 

a constant velocity. The obtained correction to the Hamiltonian, related to the relativistic nature of 

the interaction, vanishes in the nonrelativistic limit as 𝑐 goes to infinity. In deriving the 

nonperturbative correction, we assumed a simple relationship between Euclidean and proper times 

for the constituent particles. In principle, in our approach, it is possible to consider any dependence 

of Euclidean time on τ. Hence, we will define the nonperturbative corrections to the Hamiltonian 

𝐻 = 𝐻0 + 𝐻𝑛𝑜𝑛𝑝𝑒𝑟. = 𝐻0 + 𝐻𝑛𝑜𝑛𝑝𝑒𝑟.
0 + 𝐻𝑛𝑜𝑛𝑝𝑒𝑟.

𝐿𝑆 + 𝐻𝑛𝑜𝑛𝑝𝑒𝑟.
𝑇𝑇  As follows  

𝐻𝑛𝑜𝑛𝑝𝑒𝑟.
0 = 𝑈𝑣(𝑟) [

1

√1+
ℓ(ℓ+1)

𝑟2𝑐2

− 1]                                                                                                  (3) 

 Now, we define the nonperturbative corrections if the relative velocity is 𝑣(𝜏) =
𝜕 𝑟(𝜏)

𝜕𝜏 ≠ 0, 

�̇�(𝜏) =
𝜕 𝑣(𝜏)

𝜕𝜏 ≠ 0, �̈�(𝜏) =
𝜕 𝑣(𝜏)

𝜕𝜏 = 0. In this case, the contribution of the nonperturbative 

correction to the interaction Hamiltonian is represented based on the contribution with Thomas 

precession. Thomas precession is a relativistic effect that arises in the context of bound states, 

where particles are confined within a potential interaction. It occurs due to the combined effects 

of the relativistic motion of the particles and their intrinsic magnetic moments. Thomas precession 

causes a precession or rotation of the spin or angular momentum of the particles around the 

direction of their motion. This additional precession arises as a consequence of the relativistic time 

dilation and length contraction effects.  So we define all terms based on quantum electrodynamics 

when charged particles undergo accelerated motion, quantities  
𝜕ℓ̂ 

𝜕𝜏
, 
𝜕2ℓ̂ 

𝜕𝜏2  and 
1

𝑐𝑟

𝜕ℓ̂ 

𝜕𝜏
 are related to the 

spin precession. This means that the accelerated motion of the charged particles can induce a 

precession of their spin, which in turn affects their dynamics and can lead to the emission of 

electromagnetic radiation. These quantities are associated with spin precession and read  
𝜕ℓ̂ 

𝜕𝜏
=

𝜕[𝑟.⃗⃗⃗   �⃗� ] 

𝜕𝜏
= [𝑟.⃗⃗  �̈� ]

 
,  

1

𝑐𝑟

𝜕ℓ̂ 

𝜕𝜏
=

1

𝑐
[𝑛.⃗⃗⃗   �̈� ] ,  

𝜕2ℓ̂ 

𝜕𝜏2
=

𝜕[𝑟.⃗⃗⃗   �⃗̇� ]
 

𝜕𝜏
= [𝑣.⃗⃗⃗   �̇� ]                                                   (4) 

 

where 𝑟 ⃗⃗ is the distance between the particles, 𝑣 = (�⃗� . 𝑣 )- is the relative velocity of particles. Then 

the interaction Hamiltonian associated with Thomas precession taking into account the above 

equations read 

 



𝐻𝑛𝑜𝑛𝑝𝑒𝑟.
𝐿𝑆 = −

𝑈𝑣(𝑟)

4

ℓ̂[𝑣.⃗⃗⃗   �⃗̇� ]
 

𝑣4 [3 ln(1 + 𝑣2) − 𝑣2 1−𝑣2

1+𝑣2]                                                                       (5) 

and 

𝐻𝑛𝑜𝑛𝑝𝑒𝑟.
𝑇𝑇 = −

𝑈𝑣(𝑟)

256

𝑟2  

𝑣6 (
1

√1−𝑣2
− 1)[𝑣.⃗⃗⃗   �̇� ]

2
[1 − √1 + 4𝑣2 + 8𝑣2 − 8𝑣4 +

8

3
𝑣6]                        (6) 

Parameter Ω =
[𝑣.⃗⃗⃗   �⃗̇� ]

 

𝑣2  – is the frequency of Thomas precession. 
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