
Quasinormal Modes of a Black Hole with Quadrupole Moment

Alireza Allahyari1 and Bahram Mashhoon1,2

1School of Astronomy,

Institute for Research in Fundamental Sciences (IPM),

P. O. Box 19395-5531, Tehran, Iran
2Department of Physics and Astronomy,

University of Missouri,

Columbia, Missouri 65211, USA

We analytically determine the quasinormal mode (QNM) frequencies of a black hole with 

quadrupole moment in the eikonal limit using the light-ring method. The generalized black holes 

that are discussed in this work possess arbitrary quadrupole and higher mass moments in addition

to mass and angular momentum. In particular, the generalized black hole that we consider for our 

extensive calculations is a completely collapsed configuration whose exterior gravitational field can

be described by the Hartle-Thorne spacetime [Astrophys. J. 153, 807-834 (1968)]. This collapsed 

system as well as its QNMs is characterized by mass M , quadrupole moment Q and angular mo-

mentum J , where the latter two parameters are treated to first and second orders of approximation, 

respectively. When the quadrupole moment is set equal to the relativistic quadrupole moment of the 

corresponding Kerr black hole, J2/(Mc2), the Hartle-Thorne QNMs reduce to those of the Kerr 

black hole to second order in angular momentum J . Using ringdown frequencies, one cannot ob-

servationally distinguish a generalized Hartle-Thorne black hole with arbitrary quadrupole moment 

from a Kerr black hole provided the dimensionless parameter given by |QMc2 − J2|c2/(G2M4) is 

sufficiently small compared to unity.

We consider that the final state of collapse is characterized by a set of exterior multipole moments 

of the system. We treat the angular momentum to second order and the quadrupole contribution to first 

order. We study analytically the QNMs of this configuration in the eikonal limit using the light-ring
method. Consider the δ-metric Ref. [1] given by

ds2 = −Aδ dt2 + A−δ
(
A
B

)δ2−1

dr2 + A1−δ
(
A
B

)δ2−1

r2 dθ2 + A1−δ r2 sin2 θ dφ2 (1)

δ = 1 + q . (2)

We have verified from our more general results that the singularities of the δ-metric are just the ones



2

described in Ref. [1]. All the singularities occur for r ≤ 2m; for r > 2m, the exterior field of the

δ-metric is singularity-free and static. For an oblate configuration, the r = 2m hypersurface is null

provided q < (
√

5 − 1)/2. So one can set up ingoing boundary conditions for QNMs in this case

just as in the case of a black hole. We can replace δ by 1 + q, m by M/(1 + q) and then linearize

the resulting metric in the dimensionless quadrupole parameter q. To first order in q, the quadrupole

moment is then given by Q, where

Q =
2

3
M3 q . (3)

The metric is

ds2SQ = −
[
1 + q

(
2M

rA
+ lnA

)]
A dt2 +

[
1− q

(
2M

rA
+ ln

B2

A

)]
dr2

A
(4)

+

(
1− q ln

B2

A

)
r2 dθ2 + (1− q lnA) r2 sin2 θ dφ2 .

We now consider the geodesics in the equatorial plane. We have shown that the last null orbit is given

by

r0 = 3M

(
1− 1

3
q

)
,

dφ

dt
= ω± = ± 1

3
√

3M
[1− q (−1 + ln 3)] . (5)

To find the quasinormal modes we use the light ring method in which the divergence of the null rays

away from the unperturbed orbit corresponds to the decay of the QNM wave amplitude with time in

the eikonal limit [2, 3]. The imaginary parts of the QNMs are therefore given by the decay rate of the

orbit. Using this method we have shown that

ωQNM = ω0
SQ + iΓSQ = ± jω± + iγSQ

(
n+

1

2

)
, n = 0, 1, 2, 3, · · · , (6)

where

ω± = ±1− q(ln 3− 1)

3
√

3M
, γSQ =

1 + q [1 + 2 ln(2/3)]

3
√

3M
, q =

3Q

2M3
. (7)

The other metric we consider is the static Hartle-Thorne metric for a massM with quadrupole moment

Q, the latter treated to linear order [4]

ds2HT = −F dt2 +
1

F
dr2 + G r2 (dθ2 + sin2 θ dφ2) , (8)

where

F =

(
1− 2M

r

) [
1 +

5Q

4M3
Q2

2

( r

M
− 1

)
P2(cos θ)

]
. (9)
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We show that

r0 = 3M +
5Q

16M2
(52− 45 ln 3) . (10)

dφ

dt
= ω± = ± 1

3
√

3M

[
1− 5Q

16M3
(−16 + 15 ln 3)

]
. (11)

The quasinormal modes are

ωQNM = ω0
HT + iΓHT = ± jω± + iγHT

(
n+

1

2

)
, n = 0, 1, 2, 3, · · · , (12)

where

ω± = ±
1− 1

2 q̂ (−16 + 15 ln 3)

3
√

3M
, γHT =

1 + q̂ (−16 + 15 ln 3)

3
√

3M
, q̂ :=

5Q

8M3
. (13)

I. CONCLUSION

To linear order in Q and second order in J , the QNMs of one such system, namely, the stationary

exterior Hartle-Thorne spacetime have been analytically calculated in the eikonal limit using the light-

ring method. Our results may be relevant for considerations related to static quadrupolar perturbations

generated by tidal interactions [5, 6].
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